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Abstract 

 Although research finds that brain abnormalities during moral decisions underlie 

traits that lead to crime, understanding of these neural dynamics is limited. Here we use 

two samples to explore the role network engagement and components during moral 

processing. We used independent component analysis and functional network 

connectivity analysis to examine hemodynamic response during an fMRI task of moral 

processing. Eighty-four community and 539 incarcerated adult men and women 

participated; MANCOVA and machine learning algorithms were used to identify 

individual and group differences in both samples. We found patterns of neural 

engagement and connectivity consistent with proposed models of moral cognition and 

that age, IQ, and sex moderated neural engagement and connectivity during moral 

cognition in regions including the temporoparietal junction and prefrontal cortex. We also 

found that incarcerated individuals differed from community controls on functional 

network connectivity and dynamism during moral processing and that psychopathic traits 
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were related to network engagement in regions including the temporoparietal junction, 

cingulate, and temporal poles. These results extend the literature on moral processing to 

functional network dynamics, as well as highlighting the need to consider individual 

differences in understanding the neural underpinnings of moral processing. Finally, this 

study provides evidence that neural connectivity during moral processing may be able to 

predict criminality, although follow-up research on prospective prediction is necessary. 
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Chapter 1 

Introduction 

Moral Processing in the Brain 

The ability to quickly and appropriately make moral decisions is vital for 

participation in society. Violation of moral rules can result in crime, physical and 

emotional abuse, unethical professional behavior, and other undesirable outcomes. 

Estimates of the cost of crime in the United States suggest that almost $200 billion 

dollars is spent by the government on the justice system and related expenditures 

(McCollister et al., 2010). The cost of child abuse alone is $124 billion dollars  (Fang et 

al., 2012). Costs associated with white collar crimes may reach up to $1.7 trillion 

(Helmkamp et al., 1997). In order to understand how to combat moral violations and 

reduce the overall cost to society, we must understand how moral processing works—

specifically, how it goes wrong.  

There are several accounts of the biological systems underlying moral processing. 

The Event-Feature-Emotion complex (EFEC) framework has three main components: 

structured event knowledge, social perceptual and functional features, and central motive 

and emotional states. The interactions between these components, in the form of binding 

mechanisms, give rise to EFECs (Moll et al., 2005). The structured event knowledge 

component specifies that semi-automatized event sequences are stored in the posterior 

and medial (m) prefrontal cortex (PFC), and novel or less familiar events are processed 

by the dorsolateral (dl)PFC. The anterior PFC is involved in making long-term plans and 

the ventromedial (vm)PFC is implicated in the representation of social and emotional 

event knowledge. The social perceptual and functional component refers to context-
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independent representation of social features, like facial expressions, gestures, and 

semantic features. The temporoparietal junction (TPJ) stores perceptual representations of 

facial expression and gestures, and the anterior temporal cortex (ATC) processes 

semantic representation. These regions interact with the amygdala, a central motive 

region to integrate these features into social behavior (Moll et al., 2003). Finally, the 

central motive state component of EFEC covers the emotional aspect of moral processing 

(Moll et al., 2005). Paralimbic and brainstem regions underlie this process; these are the 

structures that monitor the key motivational process of homeostasis (i.e., the 

hypothalamus) and emotionality (e.g., the amygdala). Projections from these paralimbic 

regions to the PFC, as well as reciprocal inputs, allow for the interactions between central 

motive states and structured event knowledge. 

Another framework, the conflict control account of moral cognition, developed 

out of complex utilitarian judgment tasks (i.e., the trolley dilemma, as used in Greene et 

al., 2001). Behavioral studies of these tasks find that allowing someone to die to save the 

lives of others is permissible while killing someone to save the lives of others is not, 

despite the identical net gain. The conflict control model explains this difference in terms 

of moral processing. It merges a rationalist account of moral reasoning (Kohlberg, 1969) 

and a social-intuitionism account focusing on emotional response (Haidt, 2001), stating 

that the balance between these two processes reflects the actual dynamics of moral 

processing. Particularly, it predicts involvement of cognitive control frontal regions, such 

as the anterior cingulate cortex (ACC) and dlPFC, in rationalist processes needed to 

override emotional reactions to moral stimuli, located in areas including the mPFC, 

posterior cingulate (PCC), and TPJ.  
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The literature on healthy moral processing may support either of the models, as it 

consistently implicates the mPFC, frontal pole, precuneus, TPJ, PCC, temporal pole, 

middle temporal gyrus, and left amygdala (see Bzdok et al., 2012 for a meta-analytic 

review). However, these studies rely primarily on general linear models that examine 

engagement of specific neural voxels and regions based on model assumptions, rather 

than agnostic functional connectivity that might explain the interaction between these 

regions. Moreover, more specific understanding of the network dynamics involved in 

moral processing may allow us to lend support to one of the neurobiological accounts 

discussed above others.  

 Limited work has examined connectivity using Psychophysiological Interactions 

(PPI). Caceda and colleagues found distinct patterns of functional connectivity in moral 

processing related to care ethics and justice ethics (2011). Specifically, the authors found 

that ACC, TPJ, frontal pole, and PCC connectivity were related to moral judgment.  

Additionally, there is an interaction between the role of intentionality in moral judgment 

and connectivity between the vmPFC, amygdala, and TPJ (Decety et al., 2012). However, 

PPI is based on a priori seed regions leaving much of the brain unexplored; findings from 

these studies are better framed in terms of contributions to activations detected in seed 

regions (Friston et al., 1997). An agnostic functional connectivity analysis is needed to 

understand the networks underlying moral cognition.  

Psychopathy and Criminality 

Psychopathy is a clinical condition characterized by deficient emotional reactivity 

in conjunction with antisocial traits (Hare, 2003). Psychopathic individuals regularly 

commit moral violations and are responsible for a disproportionate amount of violent and 



www.manaraa.com

4 
 

 
 

repetitive crime; psychopaths also constitute approximately 25% of incarcerated 

populations (Alterman et al., 1993; Hare, 2003). These callous and antisocial behaviors 

contribute to a high financial burden, estimated to be 30-50% of the $3.2 trillion dollar 

annual societal cost of crime in the United States (Anderson, 2012; Kiehl, 2014; Kiehl & 

Hoffman, 2011). 

The picture of moral processing in psychopathy is incomplete. Initial observations 

have confirmed that immoral behaviors are more common among psychopaths than non-

psychopaths (Cleckley, 1976). Although psychopaths commit more moral wrongs than 

others, psychopaths do not differ from non-psychopaths on tasks where they classify 

stimuli as right or wrong (Aharoni et al., 2012; Cima et al., 2010; Glenn et al., 2009; 

Harenski et al., 2010; O'Kane et al., 1996; Simon et al., 1951), although conflicting 

results have been documented (Blair, 1995; Koenigs et al., 2012; Young et al., 2012). 

However, psychopaths do show different patterns of brain engagement compared to non-

psychopaths when processing moral stimuli – even when no behavioral differences exist 

(Glenn et al., 2009; Harenski et al., 2014; Harenski et al., 2010). Psychopathy-related 

effects include reduced activation in the amygdala, PCC, and TPJ during processing of 

moral stimuli. These brain regions play important roles in moral judgment. Specifically, 

Blair (2007) suggests that the amygdala and vmPFC work through stimulus-

reinforcement learning to associate distress with moral transgressions to reduce antisocial 

behaviors.  

Previous work additionally implicates the ACC and dlPFC as having abnormal 

engagement during moral processing related to psychopathy (Fede, Schaich Borg, et al., 

2016). Additionally, that study finds that incarcerated individuals do not differ from 
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healthy controls in hemodynamic response during performance of a moral decision 

making task.  

Independent component analysis has been applied to psychopathy to a limited 

extent. Juarez and colleagues found that during an auditory oddball task, psychopathy 

was correlated with the default mode network, a frontoparietal component, and a 

visual/posterior cingulate component (2013) . During resting-state, youth with 

psychopathic traits demonstrate abnormal connectivity in the default mode network and 

frontoparietal cognitive control network (Cohn et al., 2015). Additionally, seed-based 

functional connectivity analyses of youth with psychopathic traits have also found less 

connectivity between the amygdala and the orbital frontal cortex (OFC), temporal cortex, 

and inferior parietal cortex (Marsh et al., 2011).   

Present Study Goals and Hypotheses 

The task used in the present study has been previously examined in three different 

populations using a traditional general linear model (GLM) approach: typically 

functioning community individuals (Schaich Borg et al., 2011), incarcerated individuals 

with psychopathy (Fede, Schaich Borg, et al., 2016), and incarcerated stimulant users 

(Fede, Harenski, et al., 2016). Schaich Borg and colleagues found that moral processing 

engaged the TPJ/supramarginal gyrus, vmPFC, insula, basal ganglia, temporal pole, 

brainstem, ACC, amygdala/parahippocampal gyrus, and PCC. Additionally, the author of 

this dissertation found that in general, incarcerated individuals have a similar pattern of 

neural engagement during moral processing; however, psychopathic traits were inversely 

associated with engagement of the ACC, TPJ, and dlPFC. Moreover, use of cocaine and 

methamphetamine was associated with less amygdala and ACC activity but more vmPFC 
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activity during moral processing. However, none of these studies have examined 

differences in whole brain network dynamics. 

In the present study, we aimed (1) to better understand the interactions between 

neural networks during moral processing by (1a) using independent component analysis 

(ICA) to illustrate functionally connected networks during a moral processing task; (1b) 

using functional network connectivity (FNC) analyses to explore the connections 

between these networks; and (1c) exploring whether these moral networks are consistent 

across individual differences. We also aimed (2) to understand whether differences in 

neural moral processing were related to traits associated with behavioral moral violations 

by (2a) using analysis of covariance to investigate differences between incarcerated and 

community individuals and (2b) differences related to psychopathic traits. We also 

explored this by (2c) using machine learning to select neural connectivity features and 

develop models that can predict differences between incarcerated and healthy individuals, 

and between high and low psychopathy scorers. 

Based on the theoretical and empirical accounts of moral cognition, we 

hypothesized that (1a) moral processing would engage mPFC, dlPFC, frontal pole, insula, 

hippocampal, amygdala, ACC, PCC, ATC, and TPJ components. Across regions, we 

anticipated that (1b) limbic components would be highly correlated with temporal and 

frontal components, since paralimbic regions (such as the amygdala) have reciprocal 

connections to each of these regions. This would also be consistent with the Moll et al., 

2005 study. (1c) We did not anticipate that sex, IQ, or age would have a significant effect 

on these functional components or functional network connections. 
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Given the lack of previous evidence finding neural differences between 

incarcerated individuals in general and community controls, we hypothesized that (2a) 

the incarcerated sample would not differ significantly from the community sample in 

functional components or connectivity during moral processing, but that (2b) 

psychopathy would be related to abnormal paralimbic engagement and connectivity. 

Given these expected brain differences, we anticipate that (2c) machine learning can be 

used to develop a brain-based classification model for high/low psychopathy, but not for 

the incarcerated/community distinction.  
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Chapter 2 

Methodology 

Participants 

Two samples were collected 

for this project: a community sample 

(n = 84) and a sample of incarcerated 

individuals (referred to as the 

“forensic sample”; n = 539). All 

participants were provided written, 

informed consent and were 

compensated for their participation. 

All individuals who participated were 

required to meet the following 

criteria: age between 18 and 55, IQ 

greater than 80, no history of 

traumatic brain injury with loss of 

consciousness greater than one hour, and no history of psychosis in self or first degree 

relative. Additionally, the community sample could not have a history of major substance 

use or criminal behavior. The forensic sample was recruited from minimum and medium 

security prisons in New Mexico and Wisconsin; the community sample was recruited in 

Albuquerque, New Mexico. See Tables 1 and 2 for a description of the samples. 

 

  

Table 1 .

Descriptive Statistics for Community and Forensic Samples

Variable

mean sd mean sd

IQ*** 117.18 12.56 97.08 11.55

Age*** 27.17 10.29 34.49 8.58

Years of Education*** 14.72 1.55 11.75 1.97

PCL-R 20.22 6.85

Substance Use Disorders (number of) 1.75 1.48

Sex (percent)**

Male 39.3 57.3

Female 60.7 42.7

Race (percent)

American Indian/ Alaskan Native 7.8 9.8

Asian 5.2 0.4

Black/African American 3.9 12.8

Native Hawaiian/ Pacific Islander 0 0.2

White 68.8 48.7

Other/ Decline to State 14.3 26.9

Ethnicity (percent)**

Non-Hispanic 75.3 58.3

Hispanic 24.7 41.7

Substance Use Disorders (percent)

Alcohol 44.5

Sedative/Hypnotic/Anxiolytic 5.3

Cannabis 25.2

Stimulants 36.8

Opiods 21.7

Cocaine 39.3

Hallucinogens 4.1

Notes : Percent refers to the percent of each sample falling into the cateogry 

indicated. Substance Use Disorder and PCL-R information were only collected for 

the forensic sample.Astericks next to variable name indicate significant group 

differences: *p <.05, **p <.01, ***p <.001

Community      (n 

= 84)

Forensic            

(n = 539)
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Data Collection Procedure 

Assessments 

IQ was estimated using 

the Vocabulary and Matrix 

Reasoning subtests of the 

Wechsler Adult Intelligence 

Scale (WAIS; Wechsler, 1997; 

Ryan et al., 1999) and reading 

level was assessed with the Wide 

Range Achievement Test Word 

Reading subtest (WRAT-3; 

Wilkinson, 1993). Psychiatric and substance use histories were assessed with the 

Structured Clinical Interview for DSM-IV disorders (SCID; First et al., 2002). 

Psychopathy was assessed using the Hare Psychopathy Checklist- Revised (Hare, 

2003). The PCL-R is the most widely used assessment of psychopathy in forensic 

populations. It is made up of 20 items each scored 0 doesn’t apply, 1 applies somewhat, 

or 2 definitely applies. PCL-R Total score is made up of two factors:  Factor 1 is 

composed of interpersonal and affective traits (e.g., lack of remorse, grandiosity) whereas 

Factor 2 is made up of lifestyle and antisocial traits (e.g., poor behavioral controls, 

impulsivity). Trained research assistants, including the author of this dissertation, 

conducted these semi-structured interviews covering topics including school and 

employment history, work history, criminal activity, and interpersonal behaviors in 

addition to reviewing institutional records. Interviews were recorded for reliability 

Table 2 .

Associations between individual variables

Community Sample (n 

= 84) IQ Age

Years of 

Education

IQ 1 -0.086 0.024

Age -0.086 1 .421**

Years of Education 0.024 .421** 1

Sex Differences

Males 120.52 (14.11) 26.21 (8.87) 14.69 (1.71)

Females 115.02 (11.05)27.78 (11.15) 14.75 (1.45)

Forensic Sample      

(n = 539) IQ* Age

Years of 

Education PCL-R***

Number of 

Substance Use 

Disorders***

IQ 1 0.047 .368** -0.016 -.107*

Age 0.047 1 .167** -.139** -.158**

Years of Education .368** .167** 1 -0.084 -.103*

PCL-R -0.016 -.139** -0.084 1 .200**

Number of Substance 

Use Disorders -.107* -.158** -.103* .200** 1

Sex Differences

Males 98.10 (12.15) 34.82 (9.25) 11.83 (1.82) 21.41 (7.15) 1.48 (1.54)

Females 95.89 (10.70) 34.04 (7.60) 11.67 (2.12) 18.38 (5.98) 2.07 (1.35)

Notes : Continuous variables reported in correlation table form. Sex differences investigated with 

independent sample t-tests. Values are mean(standard deviation). Significance indicated by astericks 

as follows: *p <.05, **p <.01, ***p <.001. 
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assessment and a randomly selected portion of the sample (approximately 10%) was 

double rated to insure inter-rater reliability.  

Task 

 Participants were shown words and phrases describing moral acts or concepts 

(task adapted from Schaich Borg et al., 2011). Fifty stimuli were classified as 

noncontroversial negative (e.g., murder, slavery), fifty were classified as 

noncontroversial positive (e.g., charity, kindness), and fifty were classified as 

controversial (e.g., animal testing, gun control). Controversial stimuli required more 

processing than noncontroversial stimuli, confirmed in our study by an increased 

response time to the stimuli (Fede, Harenski, et al., 2016; Fede, Schaich Borg, et al., 

2016). Participants were presented with a stimulus and asked to press one button to 

indicate that they thought the word or phrase was morally wrong and a different button to 

indicate that they thought the stimuli was morally not wrong. After the button was 

pressed, a black jittered screen was shown for 1 to 6 seconds. Three runs of the task were 

administered, each including 50 stimuli evenly divided among stimulus types. 

Participants were scanned during the task using the Mind Research Network’s 

1.5T Siemens Avanto mobile MRI scanner stationed at the correctional facilities and at 

the University of New Mexico. The scans were acquired using an EPI gradient-echo 

pulse sequence (parameters: TR 2000, TE 39 ms, flip angle 75°, FOV 24 x 24 cm, 64 x 

64 matrix, 4 mm slice thickness, 27 slices). The task was presented using E-Prime 

software (Psychological Software Tools, 2012). 
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Data Analysis Procedure 

Image Preprocessing 

Imaging data were preprocessed using Statistical Parametric Mapping software 

(SPM5; Wellcome Department of Cognitive Neurology, 2005). A multistage procedure 

was used to address the issue of head motion. First, the ArtRepair Toolbox in SPM 

(Mazaika et al., 2009) was used to identify and remove severe artifacts, defined as time 

points with greater than 4% signal change from the global mean signal. Next, head 

motion was estimated using INRIAlign, an algorithm that is insensitive to eye 

movements and blood oxygenation level dependent (BOLD) activity (Freire et al., 2002). 

The ArtRepair Toolbox removes severe motion artifacts but does not account for smaller, 

more distributed effects of motion. INRIAlign software creates parameters that account 

for remaining motion and include them as a variable in the modeling of hemodynamic 

response. Images were then spatially normalized to the Montreal Neurological Institute 

(MNI) template and smoothed with an 8 mm full-width at half-maximum Gaussian 

smoothing kernel. A high-pass filter removed low-frequency drift at 1/128 HZ. 

Independent Component Analysis 

ICA was applied to extract network components (ICs). ICA is an agnostic 

technique for extracting independent sources from fMRI data. Group ICA in GIFT 

(Calhoun, 2004) was conducted to maximize the independence of 75 components using a 

PCA based separation algorithm at a single-subject level. This higher model order 

separation was based on previous studies (e.g., Allen et al., 2011) and in order to detect 

more specific sub-network effects (Smith et al., 2009). Resulting ICs were then labeled 

spatially or identified as artefactual by experts based on the Brain Atlas (Woolsey et al., 
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2013) and the Wake Forest University Pick Atlas in SPM (Maldjian et al., 2004; Maldjian 

et al., 2003). Prior to further analysis, ICs related to artifact or noise were identified and 

removed from further analyses. 

The SPM Statistics utility within GIFT was then used to identify task-event 

related components by regressing stimuli onsets and comparing stimuli types. 

Specifically, components were sorted temporally based on the SPM design matrix 

(stimuli onsets). These parameters were then used to compare controversial moral stimuli 

related component activity (considered moral processing) to noncontroversial moral 

stimuli related activity in a one-way ANOVA design. See Figure 1 for a flowchart of the 

procedures for the ICA and functional network connectivity analysis. 

Functional Network Connectivity 

Functional network connectivity (FNC) was examined using the FNC toolbox for 

GIFT (Jafri et al., 2008; Swanson & Calhoun, 2009). FNC analyses examine the 

correlations between the time courses of each component extracted in the ICA analysis in 

order to create a matrix quantifying network connectivity. Two types of FNC analyses 

were conducted. First, static FNC was used to determine IC connectivity, concatenating 

across all three runs of the task. Then, dynamic FNC was used to look at changing 

functional connectivity across the course of the task (Allen et al., 2012). Typical FNC 

analysis assumes that brain connectivity is stable over time; research using this technique 

has demonstrated that this is not true during resting state (much less during a more 
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complex task.) The analysis identified distinct patterns of network connectivity along the 

time course by using sliding tapered windowed FNCs (wFNCs) at intervals of 1 TR.  

Then, k-means clustering on the 2775 functional connection features was used to identify 
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patterns across these wFNC matrixes for each individual. Several summary variables of 

this FNC dynamism were extracted for each individuals based on that analysis: number 

of dynamic states (how many clusters were extracted), number of changes from one state 

to another state (how often did the individual transition from one pattern cluster extracted 

to another pattern cluster extracted, and back and so on), the maximal span of the states 

(the difference between an individual’s two maximally different cluster patterns), and the 

total distance in state space (for every transition between cluster, the difference between 

the original and the new state, added to each of the other transition differences), 

following the recommendations in Calhoun et al., 2014. Larger values on these scales 

indicate greater neural connectivity dynamism; higher levels of dynamism are thought to 

be adaptive (e.g., mindfulness in children is related to higher dynamic functional network 

connectivity (Marusak et al., 2017), while lower dynamism may be a biomarker of mental 

illness, such as schizophrenia (Damaraju et al., 2014; Miller et al., 2014; Miller et al., 

2016).  

Univariate/Multivariate Analysis of Covariance 

In order to investigate if these network components and connections were related 

to individual differences within our sample, we conducted univariate analyses of 

covariance (ANCOVA) and multi-way, multivariate analyses of covariance 

(MANCOVA), modeling variables of interest and the interactions between each. These 

analyses were conducted using the MANCOVAN toolbox in GIFT (Allen et al., 2011). 

Additionally, R was used for analysis of summary variables from the dFNC (R Core 

Team, 2016); specifically, a MANOVA using the Wilks lambda F-test was used, 

followed by univariate tests to interpret the findings.  
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Machine Learning 

The data sets were first split into three based on types of features included. The 

first data set was neural features only, specifically FNC matrix values and dFNC 

summary values from the analyses described previously. The second set was 

demographic and behavioral features only, including age, sex, IQ, years of education, 

race, and ethnicity (as well as number of substance use disorders for the forensic sample). 

A third data set including both types of features was also analyzed. This allowed us to 

identify whether or not neural features were useful above and beyond more easily 

collected demographic variables. See Figure 2 for a flow chart of the machine learning 

analysis procedure, as well as the details following.  

First, feature selection was used in  each data set using the Boguta package for R 

(Kursa & Rudnicki, 2010). This procedure employs the random forest algorithm, and 

requires input of classification variables (Liaw & Wiener, 2002). Random forest is an 

iterative process that generates decision trees based on randomly selected combinations 

of features. Features that are ranked significantly more important for classification than 

randomly generated noise features across iterations are identified as important to the 

model. Since random forest classification procedures do not handle missing data well, 

missing data, assumed to be missing at random, was imputed prior to feature selection 

using predictive mean matching multiple imputation generating 5 imputation sets with 50 

iterations. This was done using the mice package in R (Buuren & Groothuis-Oudshoorn, 

2011). 

Two types of classification algorithms were then evaluated: random forest and 

support vector machine (SVM). These analyses were conducted using the caret package  
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in R was then used to train and generate a classification model based on a given kernel 

specification (Kuhn, 2008). Random forest algorithms, previously described, can be used 

for both classification and regression, allowing for prediction of a continuous dependent 

variable. SVM is a supervised learning binary linear classification algorithm that uses 

kernels to model non-linear binary classes. Several kernels were evaluated here: linear, 

radial basis function (RBF; a Gaussian function), RB(cost)F, and RB(sigma)F. The 

RB(cost)F kernel leads the algorithm to favor the cost bias parameter while the 

RB(sigma)F kernel leads the algorithm to favor the sigma smoothing parameter. Given 

the relatively low number of features, and the medium number of cases, an RBF kernel 

was expected to be optimum (Ng, 2017). Additionally, non-binary classification can be 

done using SVM by employing the all-versus-one technique; the classifier is trained on 

each class as either belonging to the class or not, across all three classes. The 

concatenation of these class analyses allows a non-binary classification. All machine 

learning classifiers were trained with variables consisting of the dfNC, static FNC 

features, and behavioral and demographic data selected in the previous step. The 

classifiers were first trained using a random subset of the dataset and then tested on the 

remaining subjects (naïve to the classifier). 10-fold cross-validation, repeated 10 times, 

was used for training.  

Model fit for random forest and SVM classifiers was evaluated based on accuracy 

and Cohen’s kappa coefficient; accuracy refers to the observed rate of correct 

classification, while kappa adjusts for the expected accuracy of a random classifier. 

Regression based algorithms were evaluated based on minimizing Root Mean Squared 

Error (RMSE) and maximizing R2, which indicates the variance accounted for by the 
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model. Models were compared using a t-test of the accuracy and kappa coefficients 

(pooled across resamples), where the null hypothesis was that the models did not differ, 

corrected for multiple comparisons using a Bonferroni p-value adjustment. Notably, 

regression algorithms could not be compared directly to classification algorithms due to 

having different metrics.  
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Chapter 3: 

Healthy Moral Processing 

Analysis Methods for Healthy Sample 

 ICA was used as described in Chapter 2. Of the 75 components extracted, 13 were 

identified as noise components based on a visual inspection of the t-maps and time-

courses. An ANOVA was then used to examine the relationship between the remaining 

62 components and the task, as previously described. A FNC matrix for each subject and 

condition was then calculated based on the procedure described in Chapter 2. Only 

connectivity between task related components, identified above, was examined.   

 In the MANCOVA, covariates of interest were modeled: age, IQ, and sex. 

Additionally, the interactions between these variables were modeled. This analysis was 

applied to the independent components (ICs) and to the FNC matrixes. Dynamic FNC 

was evaluated by conducting a MANCOVA in R modeling the three previously identified 

variables as well as years of education, ethnicity, and race as independent variables and 

the dynamism values as dependent variables in the multivariate model.  

Independent Components related to Moral Processing 

 Nineteen components (ICs) in the frontal cortex, parietal lobe, limbic system, 

basal ganglia, cerebellum and occipital regions were engaged during moral processing 

(see Table 3 for a complete list and statistics). Specifically, in the ANOVA comparing 

controversial > noncontroversial, frontal ICs corresponding to the vmPFC (T = 7.915), 

dlPFC (T = 3.926), and dmPFC (T = 6.402) were significant. Additionally, the TPJ (T = 

6.316), parahippocampal gyrus (T = 2.922), ACC (T = 7.211), PCC (T = 6.007), and 

caudate (T = 5.519) were significant in that analysis. 



www.manaraa.com

20 
 

 
 

Functional Network Connectivity during Moral Processing 

 Of the 19 ICs that were found to be significantly engaged during moral 

processing, all were significantly functionally connected to at least one of the others. 

Most notably, the time courses of components corresponding to the Frontal Eye Fields 

(BA 8) and to Wernicke’s area were significantly correlated with all other moral 

processing component time courses. Additionally, dlPFC, PCC, and somatosensory 

association area ICs were correlated with 17 out of 18 of the remaining components. 

Time courses of the component 

corresponding to the V2 area had the 

lowest number of significant connections 

with other moral components (11 out of 

18).  

 In the FNC, three component time 

courses were especially correlated with 

each other:  the dlPFC and supplementary 

motor area ICs (r = .5166, p = <.000001), 

the TPJ and dmPFC IC s(r = .5014, p = 

<.000001), and the dlPFC and 

somatosensory association area ICs (r = 

.4626, p < .000001 ). Additionally, the brainstem and caudate ICs were significantly 

negatively correlated (r = -.2398, p  < .000001). The complete connectivity matrix can be 

seen in Figure 3. 

Table 3.

Moral task related independent components in the community sample

Region IC BA F T

Frontal Cortex

Ventromedial Prefrontal Cortex 63 11 22.965 7.915***

Dorsomedial Prefrontal Cortex 60 10 15.78 6.402***

Dorsolateral Prefrontal Cortex 57 9 3.417 3.043*

Dorsolateral Prefrontal Cortex 7 9 5.597 3.926***

Frontal Eye Field 38 8 10.16 5.171***

Frontal Eye Field 42 8 9.891 4.849***

Supplementary Motor Area 37 6 16.257 6.889***

Parietal Lobe

Temporoparietal Junction 72 39 16.591 6.316***

Wernicke's 51 22 5.463 3.837**

Somatosensory Association Area 67 7 6.108 3.938***

Limbic/Subcortical/Cingulate

Parahippocampal Gyrus 34 34 3.264 2.922*

Posterior Cingulate 70 30 8.237 4.59***

Posterior Cingulate 13 23 15.108 6.007***

Anterior Cingulate 65 32 18.858 7.211***

Caudate Head 36 * 10.981 5.519***

Declive 54 * 4.992 3.801*

Brainstem 45 * 6.769 4.368***

Occipital

V2 74 18 2.719 2.81*

Lingual Gyrus 44 18 5.681 1.435***

Notes : Only components significant in the contrast of task events controversial > 

non-controversial (representing moral processing) presented here. IC = 

independent component number; BA = brodmann area; F = test statistic 

(unstandardized); T = test statistic (standardized). Significance indicated by 

astericks as follows: *p<.05, **p<.01, ***p<.001. 
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 From the dFNC, several summary values were extracted. On average, the 

community participants occupied 14.00 meta-states during moral processing (sd = 2.86) 

with 18.00 transitions between states (sd = 3.22). The average maximum state span was 

7.55 (sd = 1.28) with the distance on average being 20.71 (sd = 4.17).  

Individual Differences in Neural Moral Processing 

The MANCOVA modeling individual differences (age, sex, IQ) and their 

interactions with ICA spatial maps and FNC correlations found several significant effects 

of individual differences. First, age moderated the engagement of ICs corresponding to 

the vmPFC, 

somatosensory association 

area, and PCC. Age also 

moderated overall 

functional network 

connectivity; specifically, 

parahippocampal gyrus-

TPJ connectivity and 

dlPFC-frontal eye field 

connectivity were 

positively related to age. 

Meanwhile, connectivity 

between a frontal eye field 

IC and ICs in the dmPFC, vmPFC, Wernicke’s area, TPJ, and cerebellum, as well as TPJ-

caudate connectivity were negatively associated with age.  Sex moderated engagement of 
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ICs corresponding to the TPJ, PCC, and brainstem, while IQ moderated engagement of 

TPJ and somatosensory association area components. See Figure 4 for a graphical 

representation.  

The MANCOVA of dFNC summary statistics indicated two significant 

interactions between independent and dependent variables. First, the interaction between 

age, sex, and years of education was significant in the model (F (1,39) = 3.3270,  p  = 

.02036). Second, the interaction between IQ, age, years of education, and race was 

significant in the model (F(1,39) = 4.3074,  p = .00599). 

 Univariate ANCOVA analyses were conducted to see the simple effects. The 

interaction between age, sex, and years of education was at a trend level in the model of 

span (F(1,75) = 3.726, p = .0573). The interaction between IQ, age, years of education, 
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and race were significant in the models of change states (F(1,67) = 5.057, p = .0278) and 

distance (F(1,67) = 4.234).  More simple effects were not significant. 

Discussion 

 We conducted an ICA and FNC analysis of hemodynamic response during moral 

processing in a typically functioning community sample. We hypothesized that the ICA 

would identify network components consistent with previous GLM studies of the neural 

underpinnings of moral decision making. This was largely confirmed. We found that 

components corresponding to the mPFC, dlPFC, TPJ, cingulate, and parahippocampal 

gyrus were significantly task related. Additionally, components corresponding to the 

basal ganglia, lingual gyrus, somatosensory association area, and supplementary motor 

area were found to be task related.  However, we did not find significant task related 

components in the insula or temporal regions. The parahippocampal component 

subsumed the amygdala and the dmPFC component included the frontopolar region. 

Importantly, this lends support to theories of moral processing that focus not only on 

frontal cognitive and limbic emotional network processes (e.g., Greene et al., 2004), but 

also on temporoparietal networks that relate to social context processing (e.g., Moll et al., 

2005).  Although the basal ganglia and lingual gyrus were not specifically hypothesized 

as being related to moral processing, they were found to be related in the Schaich Borg et 

al. (2011) study using this same task. 

 We expected that the limbic components (cingulate, parahippocampal gyrus) 

would be highly correlated with temporal (TPJ) and frontal (mPFC, dlPFC) components. 

This hypothesis was partially supported by the FNC findings. Overall, the moral task-

related components were correlated with each other. However, the strongest correlations 
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were between frontal and temporoparietal components, rather than with limbic 

component time courses. This may reflect greater engagement of social rules during 

cognitive phases of moral decision making, rather than the cognitive-affective balance 

posited by the conflict-control model. However, it may also reflect a temporal offset 

between rational (i.e., consideration of social mores, action oriented decision making) 

and affective response. An electrophysiology study of moral cognition found evidence for 

distinct temporal onset of neural processes, including intention evaluation (62ms), 

affective processing (122-182ms), and decision making (~300ms; Decety & Cacioppo, 

2012). The authors also found that temporoparietal engagement corresponds to early 

intentionality evaluation rather than to later cognitive processing; thus, additional 

electrophysiology work examining roles of that region during moral processing may be 

required to understand the functional connectivity findings in the present study. 

 We did not anticipate that age, IQ, or sex related variability would be associated 

with functional components or networks during moral processing. This hypothesis was 

not supported by our findings. In fact, we found that age was significantly related to 

overall network connectivity. As age increased, so did connectivity between the 

parahippocampal gyrus/ amygdala and TPJ. In contrast, basal ganglia-TPJ and frontal eye 

field-mPFC-parietal connectivity decreased with age. This suggests that FNC during 

moral processing, particularly in terms of communication between processes, is variable 

with age. Although this was not the hypothesized outcome, it is consistent with the 

literature. Older adults with neurodegenerative disorders have less small-world 

connectivity (Supekar et al., 2008), less specificity in brain networks, and greater/less 

connectivity in sensorimotor/default mode networks, respectively (Song et al., 2014).  
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We also found evidence of sex differences in individual component engagement 

corresponding to the PCC, TPJ, and brainstem. These findings are also consistent with 

the literature. In a meta-analysis of emotional processing, women were found to have 

greater brainstem activation and less PCC activation than men (Wager et al., 2003). 

Additionally, men have been found to have greater left TPJ but less right TPJ 

engagement during a task of empathy (Schulte-Rüther et al., 2008).  

Finally, IQ, as measured by an abbreviated version of the WAIS, was found to be 

related to component engagement in TPJ and somatosensory association ICs. Some 

previous literature indicates differences in functional connectivity related to intelligence 

level, although primarily in occipital and mPFC regions (Haier et al., 2003). Overall gray 

matter volume (GMV) has also been correlated with IQ, as well as parietal GMV, 

supramarginal gyrus GMV and white matter volume near the TPJ (Andreasen et al., 

1993; Colom et al., 2006; Haier et al., 2004; McDaniel, 2005) 

 We also conducted an analysis of FNC dynamism. dFNC methodology has 

primarily been used to identify group differences; there are no published standards on 

typical resting dynamics and in fact, these reported values are not comparable to other 

published uses of this technique with different sized state-spaces. However, the 

dynamism for the community participants was reported here for comparison with the 

dynamism for the other samples.  

There were significant interactions between functional connectivity dynamics and 

demographic variables. The interaction between age, sex, and years of education was 

significantly related to maximal distance between dynamic functional connectivity states, 

although simple effects were not. However, examination of correlations patterns for each 
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of the variables may indicate the following explanation of the interaction. For males, as 

years of education increased and age decreased, maximal distance between dynamic 

functional states increased, suggesting greater neural dynamism during moral processing. 

For females, maximal distance increased as both years of education and age decreased.  

The interaction between IQ, age, years of education, and race was significantly related to 

the number of transitions between dynamic function connectivity states, although simple 

effects were not. Examination of correlation patterns can partially explain the interaction. 

For individuals identifying as Caucasian/White, Latin/Other, and African American/ 

Black, both age and years of education were negatively correlated with number of 

transitions between states; however, Caucasian/White and African American/Black 

individuals had a positive correlation between IQ and number of transitions between 

states while Latin/Other individuals had a negative relationship between IQ and 

transitions. Additionally, both Asian and American Indian individuals had a positive 

relationship between age and number of transitions between functional connectivity 

states, but Asian individuals also had a positive relationship between years of education 

and transitions, while American Indian individuals had a negative association. This 

suggests a very complicated relationship between race, age, IQ, years of education and 

dynamism during moral processing.   
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Chapter 4: 

Forensic Moral Processing 

Analysis Methods for Forensic Sample  

 ICA was used as described in Chapter 2. This analysis was run in two samples: 1) 

the complete sample of forensic and community participants (n = 623); and 2) the 

forensic sample only (n = 539). For sample one, 11 of the 75 components were identified 

as noise components based on a visual inspection of the t-maps and time-courses. A 2 

(controversial; noncontroversial) x 2 (community; forensic) ANOVA was then used to 

examine the relationship between the remaining 64 components, the task, and the two 

types of subjects. For sample two, eight ICs were identified as noise. A one-way 

ANOVA was then used to identify task related components for further analysis. 

 A FNC matrix for each subject and condition was then calculated based on the 

procedure described in Chapter 2. Only connectivity between task related components, 

identified above, was examined.  A feature selection was run, and random forest and 

SVM classifiers were trained to differentiate between forensic and community 

individuals. 

 In the MANCOVA, covariates of interest were modeled: age, IQ, and sex.  

Additionally, the interactions between these variables were modeled. This analysis was 

applied to the independent components (ICs) and to the FNC matrixes. Dynamic FNC 

was evaluated by conducting a MANCOVA in R modeling the previously identified 

variables as well as years of education, ethnicity, and race as independent variables and 

the dynamism values as dependent variables in the multivariate model. Number of 

substance use dependencies was also included as a variable in the forensic sample only.  
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Additional follow-up analyses were done to refine the predictive utility of the 

brain connectivity features. First, feature selection was used to identify features that were 

important to the distinction between the forensic and community samples. Then, SVM 

and random forest classifiers were trained using those selected FNC, dFNC, and 

behavioral and demographic features to discriminate between the two samples. This 

procedure was also followed in the forensic sample to classify high and low psychopathy 

groups with number of substance use disorders also included in the model. The forensic 

groups were divided by psychopathy in two ways: first, the sample was split at the 

median (20) into high and low scorers; second, the sample was split into high, medium, 

and low groups based on thresholds for clinical diagnosis (30 and above, between 20 and 

30, and 20 and below, respectively). Additionally, a random forest regression (as opposed 

to classification) algorithm was used with PCL-R Total score as a continuous dependent 

variable. Sex was included as a demographic variable in the feature selection, given 

findings that male and female psychopathy may be meaningfully distinct (Cale & 

Lilienfeld, 2002).  

Moral Processing Differences between Incarcerated and Community Individuals 

Twenty-nine ICs in the cingulate cortex, parietal, occipital, and temporal lobes, 

basal ganglia, and Broca’s area that were engaged during moral processing were also 

significantly different between forensic and community participants (see Table 4 for a 

complete list and statistics). Specifically, in the ANOVA comparing community > 

forensic, cingulate ICs corresponding to the PCC (ventral: T = 4.228; dorsal: T = -3.521) 

and ventral ACC (T = -4.389 for one vACC IC, although also T = 2.422 for another 

vACC IC) were significantly different between groups. Additionally, the TPJ (T = 
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5.315), parahippocampal gyrus (T = -3.423), insula (T = -4.119), caudate (tail: T = -

4.598; body: T = 3.847), and globus pallidus (T = 3.315) were significantly different 

between groups.  

Forty-seven ICs in the frontal cortex, parietal lobe, cingulate, basal ganglia, 

limbic system, and lingual gyrus were engaged during moral processing in the forensic 

sample (see Table 5 for a 

complete list and statistics). 

Specifically, in the ANOVA 

comparing controversial > 

noncontroversial, ICs 

corresponding to the TPJ (T 

= 13.273), vmPFC (T = 

9.768), ACC (T  = 8.742), 

PCC  (T = 14.333), 

parahippocampal gyrus (T = 

11.622), and temporal pole (T 

= 6.81) had greater activity in 

the moral processing 

condition.  

The MANCOVA 

modeling effect of subject 

type (forensic and 

community) and its 

Table 4.

Region IC BA F T (Community > Forensic)

Frontal Cortex

Inferior Frontal Gyrus 66 45 4.606** -2.009*

Inferior Frontal Gyrus 70 45 59.119*** 2.469*

Temporal Lobe

Insula 1 13 6.714*** -3.473***

Insula 38 13 18.122*** -4.119***

Temporal Pole 24 38 19.25*** 5.661***

Superior Temporal Gyrus 49 13 55.813*** -2.211*

Parahippocampal Gyrus 13 35 3.148* -3.423***

Parietal Lobe

Temporoparietal Junction 55 39 77.021*** 5.315***

Supramarginal Gyrus 58 40 16.999*** 2.556*

Cingulate

Posterior Cingulate 31 23 39.629*** 4.228***

Posterior Cingulate 74 29 3.809** -3.276**

Posterior Cingulate 6 29 109.562*** 4.422***

Posterior Cingulate 11 31 17.182*** -3.521***

Posterior Cingulate 52 23 4.566** 2.95**

Anterior Cingulate 23 24 5.835*** 2.422*

Anterior Cingulate 41 24 3.682* -4.389***

Anterior Cingulate 56 24 35.202*** 2.132*

Subcortical/ Basal Ganglia

Caudate 19 * 14.455*** -3.276**

Caudate 22 * 20.782*** -4.539***

Caudate Tail 71 * 2.652* -4.980***

Caudate Body 68 * 7.484*** 3.847***

Caudate Head 53 * 2.614* -2.088*

Globus Pallidus 42 * 52.944*** 3.315***

Thalamus 34 * 17.209*** -6.724***

Sensory

Fusiform 8 37 3.98** -3.17**

Fusiform 9 19 20.045*** 2.687**

V2 40 18 3.195* 4.191***

Primary Association Area 18 41 12.208*** 2.591**

Precuneus 10 7 3.405* 2.699**

Notes : Only components significant in the contrast of task events controversial > 

non-controversial (representing moral processing) presented here. IC = 

independent component number; BA = brodmann area; F = test statistic 

(unstandardized); T = standardized contrast statistic. Significance indicated by 

astericks as follows: *p<.05, **p<.01, ***p<.001. 

Distinct moral task related independent components in the forensic vs. 

community sample
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interactions with ICA spatial maps and FNC 

correlations was significant. First, subject type 

moderated the engagement of ICs 

corresponding to the parahippocampal gyrus, 

insula, PCC, caudate, thalamus, precuneus, and 

primary association area. Overall functional 

network connectivity also differed by subject 

type; specifically, community participants had 

greater connectivity between the inferior 

frontal gyrus component and caudate body, 

TPJ, and globus pallidus ICs, between the PCC 

component and the fusiform gyrus, globus 

pallidus, and caudate body, as well as between 

the ACC and TPJ, precuneus, and caudate. 

Additionally, the community participants had 

greater insula-primary association area, TPJ-

fusiform, and intra-caudate connectivity. 

Forensic subjects had greater connectivity 

between caudate components and temporal 

pole, TPJ, PCC, and primary association area 

ICs, as well as fusiform gyrus-IFG and globus 

pallidus-PCC component connectivity. See 

Figure 5 for a graphical representation.  

Table 5 .

Moral task related independent components in the forensic sample

Region IC BA F T

Frontal Cortex

Ventromedial Prefrontal Cortex 46 47 34.812 9.768***

Dorsolateral Prefrontal Cortex 60 46 27.884 8.906***

Frontal Eye Fields 43 8 11.116 5.517***

Premotor 8 6 17.376 6.982***

Premotor 65 6 16.566 -6.123***

Premotor 67 4 8.056 -2.83***

Temporal Lobe

Insula 4 13 13.186 -5.462***

Insula 14 13 11.466 -5.411***

Inferior Temporal Gyrus 52 20 8.416 4.577***

Superior Temporal Gyrus 70 22 29.833 -9.05***

Temporal Pole 17 38 26.283 -8.529***

Temporal Pole 24 38 17.541 6.81***

Parietal Lobe

Temporoparietal Junction 58 39 71.549 13.273***

Temporoparietal Junction 55 39 5.778 3.498***

Supramarginal Gyrus 45 40 3.158 3.158*

Supramarginal Gyrus 44 40 50.397 -11.582***

Supramarginal Gyrus 35 40 10.347 4.74***

Superior Parietal Lobule 50 7 21.947 -6.864***

Postcentral Gyrus 29 2 17.648 -7.092***

Postcentral Gyrus 36 1 12.511 -6.009***

Limbic/Subcortical/Cingulate

Anterior Cingulate 5 24 10.586 -5.094***

Anterior Cingulate 28 24 8.724 -4.78***

Anterior Cingulate 49 25 5.932 -3.886***

Anterior Cingulate 56 24 32.075 8.742***

Posterior Cingulate 3 30 18.936 6.544***

Posterior Cingulate 6 31 9.13 -4.371***

Posterior Cingulate 71 23 3.137 -2.726*

Posterior Cingulate 39 21 87.32 14.333***

Posterior Cingulate 74 29 4.992 3.366**

Precuneus 9 7 18.215 -6.861***

Precuneus 72 7 4.345 -1.845**

Parahippocampal Gyrus 20 34 51.001 11.622***

Globus Pallidus 48 * 7.236 4.495***

Putamen 18 * 4.229 -1.03**

Thalamus 68 * 8.027 4.604***

Thalamus 37 * 6.34 4.272***

Thalamus 16 * 4.414 3.365**

Brainstem 61 * 21.272 7.687***

Cerebellum (Declive) 62 * 7.257 3.856***

Cerebellum (Culmen) 59 * 5.191 3.233**

Cerebellum (Culmen) 57 * 12.843 -5.683***

Cerebellum (Culmen) 47 * 8.632 4.986***

Occipital

Lingual Gyrus 31 17 4.223 1.418**

Lingual Gyrus 32 18 5.774 -1.192***

Lingual Gyrus 12 18 36.14 -0.095***

V2 73 18 15.662 6.584***

Fusiform 64 19 3.325 -2.645*

Notes : Only components significant in the contrast of task events controversial 

> non-controversial (representing moral processing) presented here. IC = 

independent component number; BA = brodmann area; F = test statistic 

(unstandardized); T = test statistic (standardized). Significance indicated by 

astericks as follows: *p<.05, **p<.01, ***p<.001. 
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 In the MANCOVA of dFNC summary statistics, the effect of group was 

significant (F(1,297) = 27.5548, p <2.2E-16).  Specifically, groups differed on distance 

and span dynamics, where typical community individuals compared to incarcerated 

individuals had greater meta-state distance (community: mean =  23.96863, sd = 3.46243; 

forensic: 21.2026, sd = 3.978898; F(1,621) = 36.68, p = 2.41e-09) and span (community: 

mean = 10.96078, sd = 1.189028; forensic: mean = 9.587361, sd = 1.479255; F(1,621) = 

66.46, p = 1.98e-15).  

Feature selection identified seven features (in the data set that included all 

features) that discriminated between groups after correction for multiple comparisons. 

These were IQ, age, years of education, and maximal dynamic state span, as well 
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asfusiform gyrus- caudate, premotor-STG/insula, and TPJ-lingual gyrus connectivity. 

Using only these features, the random forest algorithm was best able to discriminate 

between forensic and community participants in the training (accuracy: 100%, sensitivity: 

100%, specificity: 100%, kappa: 1) and in the training set (accuracy: 93.55%, sensitivity: 

94.16, specificity: 88.89%, kappa: 0.69.) See Table 6 for results for all classification 

algorithms. This classifier was significantly better than those with only neural features, 

and better than a SVM linear classifier. However, it was not significantly different than 

SVM RBF classifiers in the full feature set or in the behavioral/demographics set only, or 

than the random forest classifier in the behavioral/demographics set (see Figure 6 for a 

graphical comparison of classifiers).   

Table 6.

Algorithm Accuracy Kappa

Correct 

"Forensic" 

Classification

Correct 

"Community" 

Classification p-value

Negative Difference 

from Best Model- 

Accuracy (Kappa)

All Selected Features

SVM- Linear 0.92 0.69 0.95 0.77 0.01 .02* (.10* )

SVM- RBF 0.92 0.68 0.94 0.8 0.03 -.001 (-.01 )

SVM- RBF Cost 0.92 0.68 0.94 0.8 0.03 -.001 (-.01 )

SVM- RBF Sigma 0.92 0.68 0.94 0.8 0.03 -.004 (.02)

Random Forest 0.94 0.73 0.94 0.89 0.02 Best

SVM- Linear 0.85 0 0.85 NA 1 .09* (.82 *)

SVM- RBF 0.86 0.19 0.86 1 1 .09'* (.63* )

SVM- RBF Cost 0.83 0.11 0.86 0.33 1 .09 (.60*)

SVM- RBF Sigma 0.86 0.18 0.86 0.75 1 .09* (.60* )

Random Forest 0.78 -0.05 0.84 0.08 1 .07* (.42*)

Selected Behavioral/Demographic Features

SVM- Linear 0.92 0.66 0.93 0.88 0.18 .01 (.08*)

SVM- RBF 0.92 0.59 0.91 1 0.79 .01 (.06)

SVM- RBF Cost 0.92 0.59 0.91 1 0.79 .01 (.06)

SVM- RBF Sigma 0.92 0.64 0.92 0.93 0.35 .01 (.05)

Random Forest 0.93 0.69 0.93 0.88 0.07 .01 (.04)

Test Results of Machine Learning Algorithms- Community vs. Forensic Samples

Notes : Reported accuracy through p-value columns refer to classification in the test sample. Comparison to 

model column is based on pooled resamples of cross-validated training models and should be interpreted in 

terms of testing set accuracy and kappa. *p value of difference < .05; SVM: Support Vector Machine; RBF: 

Radial Basis Function

Selected Neural Features
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Moral Processing, Neural Connectivity, and Psychopathy 

The MANCOVA modeling PCL-R total score and ICA spatial maps was 

significant. First, PCL-R total score moderated the engagement of ICs corresponding to 

the frontal eye fields, TPJ, ACC, precuneus, putamen, cerebellum, lingual gyrus, 

temporal pole, and V2. Additionally, the interaction between PCL-R total score and 

number of substance use disorders moderated components corresponding to the 

supramarginal gryus, superior parietal lobule, PCC, cerebellum, ACC, globus pallidus, 

insula, and fusiform gyrus. Finally, in the component corresponding to the brainstem, the 

interaction between PCL-R total score and IQ moderated engagement, while the 
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interaction between PCL-R total score and sex moderated the IC corresponding to the 

inferior temporal gyrus. Overall functional network connectivity was not moderated by 

PCL-R total score. See Figure 7 for a graphical representation.  

In the MANCOVA 

modeling dFNC summary 

variables, the effect of PCL-R 

Total score was not significant ( 

F (1,14) = .6644, p = .629695). 

However, the interactions 

between PCL-R Total and 

several other factors were 

significant. First, the interaction 

between PCL-R Total and 

number of substance use 

disorders was significant 

(F(1,14) = 11.4688, p = 

.000647). Second, the interaction between PCL-R Total, sex, and IQ was significant 

(F(10,14) = 1.7451, p = .036949). Finally, the interaction between PCL-R Total, race, 

years of education, and IQ was significant (F(2,14) = 3.4743, p = .009698). Univariate 

ANCOVA analyses were conducted to see the simple effects. The interaction between 

PCL-R Total, sex, and IQ was significant in the models of meta-state distance 

(F(16,389)=1.804, p = .0288), transitions between meta-states (F(16,389) = 1.831, p = 

.0257), and number of meta-states occupied (F (16,389) = 1.803, p = .0289).  The 
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interactions between PCL-R Total, race, years of education, and IQ and between PCL-R 

Total and the number of substance use disorders were not significant in the simple effect 

models.  

 Feature selection identified two features out of the neural and demographic/ 

behavioral data set that discriminated between high, medium, and low PCL-R groups 

after correction for multiple comparisons. These were connectivity between the 1) IFG/ 

Broca’s area and insula; and 2) temporal pole and ACC. This feature selection was 

replicated in the just neural data set; feature selection applied to the demographic 

variables only identified age and sex as important to distinguishing between levels of 

psychopathy. On the other hand, feature selection discriminating between high and low 

psychopathy (based on a median split) identified four additional features in addition to 

the two identified with the Low Medium High outcome: brainstem-ACC, PCC-brainstem, 

caudate-V2, and TPJ- STG/ Wernicke's Area connectivity. Feature selection within 

demographic variables replicated selection of age and sex as important to differentiating 

levels of psychopathy.  Feature selection based on PCL-R Total score identified several 

of the same features (Sex, IFG/ Broca’s area- insula and temporal pole – ACC 

connectivity) as well as cerebellum-TPJ and thalamus-somatosensory association cortex 

connectivity.  

The best classifier was a SVM with a radial basis sigma function kernel (sigma = 

.045, C = 32) trained on the six neural features identified in the previous step to 

discriminate between high and low (median-split) psychopathic levels. This algorithm 

classified in the training set (accuracy: 76.79%, sensitivity: 74.49%, specificity: 80.38%, 

kappa: .53); however, in the test set, the SVM did not perform significantly better than 
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chance (accuracy: 45.52%, sensitivity: 48.19%, specificity: 41.18%, kappa: -.10 ). We 

also used a random forest regression algorithm to predict PCL-R Total score. The 

optimum model explained 14.61% of the variance in PCL-R Total score for the training 

set (RMSE: 6.27), although only 2.56% of the variance for the test set (RMSE: 6.39). See 

Table 7.

Algorithm PCLR Outcome Accuracy Kappa

Correct "Low" 

Classification

Correct "Medium" 

Classification

Correct "High" 

Classification p-value

Negative Difference 

from Best Model- 

Accuracy (Kappa)

All Selected Features

SVM- Linear Median Split 0.49 -0.02 0.51 - 0.46 0.99 4.04 E -02

LMH 0.49 0 0.49 / NA NA / 0.6 NA / .89 1 1.64 E -01*

SVM- RBF Median Split 0.46 -0.09 0.49 - 0.42 1 1.45 E -03

LMH 0.48 -0.01 .49 /.50 .38 / .60 NA / .89 1 1.47 E -01*

SVM- RBF Cost Median Split 0.46 -0.09 0.49 - 0.42 1 9.34 E -03

LMH 0.47 -0.02 .49 / .47 .33 / .60 NA / .89 1 1.52 E -01*

SVM- RBF Sigma Median Split 0.46 -0.1 0.48 - 0.41 1 Best

LMH 0.49 0.01 .50 / .53 .41 / .61 NA / .89 1 1.47 E -01*

Random Forest Median Split 0.44 -0.13 0.47 - 0.4 1 2.65 E -02

LMH 0.42 -0.05 .47 / .47 .38 / .59 0 / .88 1 2.25 E -01*

R
2

RMSE

Continuous (Train) 0.15 6.27 Best

Continuous (Test) 0.03 6.39 -

Accuracy Kappa

Correct "Low" 

Classification

Correct "Medium" 

Classification

Correct "High" 

Classification p-value

Negative Difference 

from Best Model- 

Accuracy (Kappa)

SVM- Linear Median Split 0.52 0.04 0.54 - 0.5 0.99 4.66 E -02*

LMH - - - - - - -

SVM- RBF Median Split 0.5 -0.01 0.52 - 0.47 1 1.04 E -02

LMH - - - - - - -

SVM- RBF Cost Median Split 0.52 0.03 0.54 - 0.5 0.99 8.76 E -03

LMH - - - - - - -

SVM- RBF Sigma Median Split 0.52 0.03 0.54 - 0.5 0.99 6.01 E -03

LMH - - - - - - -

Random Forest Median Split 0.53 0.05 0.54 - 0.51 0.98 5.18 E -02*

LMH - - - - - - -

R
2

RMSE

Continuous (Train) 0.12 6.4 .03* (-.14)

Continuous (Test) 0.01 6.56 -

Accuracy Kappa

Correct "Low" 

Classification

Correct "Medium" 

Classification

Correct "High" 

Classification p-value

Negative Difference 

from Best Model- 

Accuracy (Kappa)

Selected Behavioral/Demographic Features

SVM- Linear Median Split 0.56 0.13 0.6 - 0.53 0.87 1.12 E -01*

LMH 0.51 0.05 .50 / 1 1 / .62 NA / .89 1 1.43 E -01*

SVM- RBF Median Split 0.55 0.1 0.57 - 0.53 0.67 9.53 E -02*

LMH 0.49 0 .49 / NA NA / .60 NA / .89 1 1.64 E -01*

SVM- RBF Cost Median Split 0.54 0.07 0.55 - 0.52 0.67 1.07 E -01*

LMH 0.49 0 .49 / NA NA / .60 NA / .89 1 1.69 E -01*

SVM- RBF Sigma Median Split 0.56 0.11 0.56 - 0.55 0.98 8.67 E -02*

LMH 0.5 0.03 .50 / .63 .50 / .61 NA / .89 1 1.51 E -01*

Random Forest Median Split 0.57 0.13 0.58 - 0.55 0.4 8.11 E -02*

LMH 0.51 0.12 .56 / .63 .46 / .63 .14 / .89 1 1.63 E -01*

R
2

RMSE

Continuous (Train) 0.05 33.49 .10* (-27.22*)

Continuous (Test) 0.01 37.69 -

Test Results of Machine Learning Algorithms- Psychopathy

Notes : Reported accuracy through p-value columns refer to classification in the test sample. Comparison to model column is based on pooled resamples of cross-validated 

training models and should be interpreted in terms of testing set accuracy and kappa. *p value of difference < .05; SVM: Support Vector Machine; RBF: Radial Basis 

Function

Selected Neural Features**
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Table 7 for results for all machine learning algorithms used and Figure 6 for a graphical 

comparison of classifiers.    

 The analysis was further broken down into male and female subsets with the 

complete set of features to evaluate whether a better model could be fit within each 

respective subset. Classification in these sets was not improved (Male: Random Forest- 

RMSE: 6.85, R2: .0004; SVM RB(sigma)F- accuracy: 43.37%, sensitivity: 37.93%, 

specificity: 46.30%, kappa: -.145. Female subset: Random Forest- RMSE: 5.91, R2: 

.0003; SVM RB(sigma)F- accuracy: 47.06%, sensitivity: 53.33%, specificity: 00.00%, 

kappa: -.224).  

Discussion 

We conducted an ICA and FNC analysis of hemodynamic response during moral 

processing in a sample of incarcerated men and women. The purpose of this analysis was 

two-fold: first, we aimed to understand whether incarcerated individuals differed in 

functional network engagement and connectivity during moral processing compared to a 

community sample; second, we investigated how psychopathy may influence these 

patterns. Based on GLM analyses comparing forensic and community samples on neural 

engagement during moral processing, we did not anticipate significant differences 

between the groups on component engagement or functional network connectivity related 

to the moral task. However, the findings contradicted that prediction. 

Using a supervised-learning classification algorithm, we were able to discriminate 

between community and forensic samples based on patterns of functional neural 

connectivity related to moral processing at a rate above 90%. In particular, the rate of 

cases falsely identified as incarcerated was only 11.11% in the testing set; cases falsely 
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identified as community was at a rate of 5.84%. This was based on features identified 

through a random-forest based feature selection analysis. Specifically, connectivity 

between visual components and basal ganglia/TPJ components, as well as between 

premotor and insula components were identified as important to distinguish between 

forensic and community participants. Additionally, demographic features (age, IQ, years 

of education) and network connectivity dynamism distinguished between these groups. 

Community individuals had greater distance (maximal and overall) between dynamic 

functional connectivity states than incarcerated individuals, suggesting that incarceration 

or criminality is associated with lower neural dynamism during moral processing. 

Although differentiation based on neural features was not the hypothesized 

outcome, it is consistent with a previous study that used an SVM classifier to 

discriminate between male adolescents who had committed homicides versus those who 

had committed non-violent crimes based on gray matter volume (Cope et al., 2014). In 

particular, these groups differed on basal ganglia and insula (as well as OFC and ACC) 

volumes, consistent with the findings seen here. In addition to replicating that analysis, 

the current study expands the scope of the effect by 1) differentiating offenders and non-

offenders, 2) applying it to male and female adults, 3) improving classification accuracy, 

and 4) applying it to fMRI data and functional network connectivity features. The overall 

improvement in classification may be due to the particular applicability of moral 

processing to the context of criminal offending; it may also be due to greater 

differentiation in FNC features than in GMV or due to a larger sample size in the current 

analysis.  
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Additional group differences indicated in the MANCOVA may be important for 

understanding atypical moral processing in incarcerated individuals. Community and 

forensic individuals differed in parahippocampal gyrus/amygdala and thalamus 

component engagement. The parahippocampal gyrus/amygdala region is considered a 

key part of emotional/affective engagement in moral decision making and connects with 

the vmPFC to integrate that information into decisions (Moll et al., 2005). Although the 

thalamus is not a typical region discussed in the context of moral judgment, it may be 

related to processing moral and non-moral unpleasant, emotionally salient stimuli (Moll 

et al., 2002). In fact, damage to the thalamus has been related to deficiencies in 

processing emotional stimuli (Fukatsu et al., 1997). Abnormalities in the engagement of 

components corresponding to these regions may then reflect atypical use of emotions 

during moral cognition in incarcerated individuals. 

There were several FNC features where community and forensic individuals 

differed. In particular, the groups differed in connectivity between several hub regions: 

PCC/precuneus, basal ganglia, and TPJ components. In the basal ganglia, both the 

caudate, a sub-region that receives inputs from other brain regions, and the globus 

pallidus, which receive inputs from the caudate/striatum and ultimately communicates to 

other neural regions, including the limbic system, may be a key to differences in moral 

decision making. Abnormalities within this system may reflect distinct patterns of reward 

processes engaged during emotional and social decision making (Hong & Hikosaka, 

2008).  

The PCC and the TPJ have roles in emotional and social processes. The PCC is 

involved in integrating memory and emotional experiences as well as evaluating “self” in 
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relation to sensory information (Maddock et al., 2003; Vogt et al., 1992). On the other 

hand, the TPJ is hypothesized to be a nexus for social rules, semantic language 

processing, and memory (Carter & Huettel, 2013). Based on these functions, one possible 

explanation for this pattern of connectivity results is that abnormalities in basal ganglia 

connections lead to atypical reward/punishment learning in emotionally salient conditions 

(Yin et al., 2008), which may in turn affect the tendency for emotional response versus 

social rule memory retrieval when confronting a moral dilemma. 

Forensic and community individuals differed on some measures of dynamism 

during moral processing. Specifically, community participants had greater maximum 

divergence between meta-states (span) and greater changes between meta-states 

(distance) than did forensic participants. This indicated less overall dynamism during 

moral processing in these incarcerated individuals, and may suggest less ability to 

flexibly integrate information across the brain as the task demands required.      

Another element that we investigated was how variability in levels of 

psychopathic traits within the incarcerated population related to network component 

engagement and connectivity during moral processing. Notably, psychopathy moderated 

activity in components corresponding to the TPJ, cingulate, basal ganglia, and temporal 

poles. Several of these regions (the ACC, PCC, and temporal poles) are part of the 

paralimbic dysfunction theory of psychopathy (Kiehl, 2006), and are consistent with our 

hypothesis.  

The interaction between psychopathy and substance use also influenced 

engagement in these regions (through distinct components) as well as moderating 

engagement of an insular component, while psychopathy’s interactions with IQ and sex 
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moderated engagement in brainstem and inferior temporal gyrus component engagement, 

respectively. Although research has already identified a potential relationship between 

substance use and neural activity during moral processing (Caldwell et al., 2015; Fede, 

Harenski, et al., 2016), and a relationship between psychopathy and substance use 

(Hemphill et al., 1994), the interaction between these features in moral processing 

components may indicate that understanding the combined influence of psychopathic 

traits and substance use is essential to explaining abnormalities in the brain processes 

underlying moral decision making. Sex and IQ interactions tended to correspond to 

individual difference effects seen in the community sample and discussed in Chapter 3.  

As previously discussed, TPJ, PCC, and basal ganglia activity may reflect 

abnormal social/semantic processing, emotional-self memory retrieval, and reward 

learning. The ACC is involved in affective attention and error monitoring (Margulies et 

al., 2007), and the temporal pole is involved in integration of sensory features (e.g., face 

recognition) into theory of mind and emotion processes (Olson et al., 2007). 

Abnormalities in these systems correspond to the general differences between 

incarcerated and community individuals; overall differences in level of psychopathic 

traits between the two groups may explain those findings. The average level of 

psychopathic traits in our incarcerated sample was 20.22; we did not assess psychopathy 

in our community sample due to the low base rate in typical adults. In a large community 

sample, the average score on psychopathic traits was equivalent to a 4.45 on the scale 

used in the present study; two-thirds of the sample had a score of 3.3 or less (Neumann & 

Hare, 2008).  
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Overall static FNC was not moderated by psychopathic traits in the MANCOVA, 

or the interaction between those traits and other measured variables. We further 

investigated this through our planned machine learning analysis. A feature selection 

identified FNC features that were important for distinguishing between high and low 

scorers on psychopathy. These were between the IFG and insula, between the cingulate 

and temporal pole / brainstem, between the basal ganglia and V2, and between the TPJ 

and superior temporal gyrus.  

However, classification using these features was less successful. Although 

classification accuracy was significant in the training set, in the test set, accuracy was not 

significantly above chance. There are several plausible explanations for this finding. 

First, the algorithm may be overfitting the training set, meaning that the classifier may be 

trained to classify based on traits unique to that set, rather than to intrinsic differences 

between high and low psychopathy. Second, given a lack of overall FNC moderation by 

psychopathic traits, FNC during moral processing may not be the optimal set of features 

to discriminate between the two groups. Some potential additions to the model could be 

component engagement, spectra information, and GLM-ROI based voxel weights. Third, 

psychopathy may not be a unitary construct across males and females. We ran the SVM 

classification within each sex, but this did not improve the accuracy of in the test sample. 

In fact, classification dropped to approximately chance in each test set. However, this 

may be due to a reduction in sample size in both the testing and training sets. Finally, 

median-split assignment to high/low psychopathy groups may not be the optimal group 

assignment. However, we did also run algorithms with two other types of psychopathy 

outcome variables: 1) traditional low-medium-high diagnostic categories; and 2) PCL-R 
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Total score as a continuous outcome variable. Classification for the traditional categories 

was worse than for median split psychopathy categories. A continuous random forest 

algorithm was able to explain some variance; however, the 2.5% variance explained in 

the test sample is unlikely to be clinically useful. 

Psychopathy significantly moderated dynamic functional network connectivity 

when considering interactions with sex and IQ; substance use; and education levels, race, 

and IQ.  The latter two interactions were significant in the overall model of FNC 

dynamism, but not any specific dynamism feature. In contrast, the interactions between 

psychopathy, sex, and IQ were related to the number of distinct dynamic states occupied 

during moral processing, how many times an individual switched between these dynamic 

states, and the size of the changes between those states. Male forensic participants had a 

small increase in dynamism as PCL-R and IQ increased; female participants had a small 

to negligible decrease in dynamism as PCL-R and IQ increased. This suggests a 

complicated interaction between individual traits and dynamic FNC states. 
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Chapter 5: 

Synthesis 

Summary of Findings 

We aimed to better understand the interactions between neural networks during 

moral processing by examining task related neural components and the correlations 

between those component time courses. We also examined how traits including age, IQ, 

sex, criminality, and psychopathy moderated these functional network dynamics. Finally, 

we evaluated the utility of these neural features for classifying based on traits associated 

with commission of crimes.  

We predicted that frontal, limbic, and temporal neural components, indicated by 

neurobiological theory of moral processing, would be identified through ICA and would 

be functionally connected to each other. We did not anticipate that individual differences 

or incarceration status would moderate engagement or connectivity of those components, 

but rather that psychopathy would moderate neural dynamics in paralimbic regions 

during moral processing. Finally, we expected to be able to classify individuals as high or 

low in psychopathic traits based on these neural features, but to be unable to classify 

between individuals that were incarcerated and those that were not.  

Several of these hypotheses were supporting by our findings. We found that 

frontal, limbic, and temporoparietal components were engaged during moral processing, 

and that these components were largely functionally connected to each other. This lends 

support to neurobiological theories of moral processing that propose involvement of all 

three neural networks, such as the Event Feature Emotion Complex theory (Moll et al., 

2005). Additionally, we found that secondary visual processing regions were engaged 
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during moral processing. Although not hypothesized, this may reflect amygdala activity 

expanding to occipital regions, as has been demonstrated previously in emotion 

processing (Krolak-Salmon et al., 2004). We replicated these results in the main effects 

of the forensic sample.  

We found that psychopathy moderated engagement of component activity during 

moral processing. However, in addition to psychopathy effects in predicted paralimbic 

regions (i.e., ACC, temporal pole, PCC, and insula), we identified an association between 

psychopathy and component engagement in the TPJ, lingual gyrus, and basal ganglia, and 

V2/fusiform gyrus regions. This suggests that during moral processing, individuals high 

in psychopathy have atypical engagement not only in limbic regions, but in social rule/ 

motivation regions implicated in classical models of moral cognition. Importantly, we 

could train a SVM to classify high and low psychopathy based on FNC features; 

however, these algorithms were not useful in a naïve sample.  

There are still several important things to take away from the results. First, a non-

linear classification algorithm was significantly better than an SVM employing a 

traditional linear kernel at identifying levels of psychopathy. This may explain 

inconsistent findings across psychopathy based fMRI analyses using a traditional GLM 

model; if the maximal neural differences in high and low scorers on psychopathic traits 

fall in a non-linear pattern, than the assumption of linearity implicit in the GLM model 

may not be met. Second, machine learning on a median split PCL-R outcome was better 

than on a low-median-high classification. Although some differences in power may 

explain this finding, it may also be that in our sample, neural correlates of high and 

medium psychopathy are not meaningfully different.  
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There were several unanticipated findings. Across samples, age, IQ, and sex 

moderated component engagement and connectivity, particularly in the TPJ; additionally, 

inclusion of these variables improved classification in the SVM. Age, IQ, and sex were 

also related to dynamism in network connectivity. Although these results were not 

hypothesized, they were consistent with the literature, as discussed in Chapter 3. These 

findings emphasize the importance of considering individual differences in functional 

neuroimaging, including studies investigating moral processing, regardless of whether 

specific hypotheses predict effects of these traits. 

We also did not anticipate the pronounced differences between community and 

forensic individuals in our sample. Previous work did not indicate differences between an 

incarcerated sample and previously published community samples when using this task 

of moral cognition (Fede, Schaich Borg, et al., 2016). One possible explanation is that 

differences only emerge when examining higher level network dynamics, such as 

functional network connectivity and dynamism. However, the present analysis differed 

significantly in other ways. First, the sample sizes of both groups were notably larger. 

Additionally, the forensic sample in the current study included both male and female 

individuals, rather than only males. Finally, our analysis quantitatively compared the two 

samples using statistical testing, rather than by simply using ROIs based on coordinates 

reported in the original study (Schaich Borg et al., 2011). 

Regardless of the failure to hypothesize this result, there are important 

implications of the finding that network dynamics can classify individuals in a naïve 

sample based on incarceration status with above 90% accuracy. If there are neural 

differences in processing of moral stimuli in individuals who are incarcerated, it may be 
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possible to use these differences as a biomarker of criminality. This would allow us to 

identify at-risk individuals and intervene before serious or repeated criminal activity.  

There are other potential explanations for these findings. It may be possible 

incarceration leads to changes in neural engagement and connectivity during moral 

processing. This would provide unique implications about the potential negative impact 

of incarceration as a solution to crime. In fact, both explanations could compound to 

account for these findings. Alternatively, it may be that there are additional differences 

between the samples that were not accounted for in these analyses. Community and 

forensic individuals did differ on age, IQ, and years of education. We did run machine 

learning algorithms looking only at neural and only at behavioral features. The 

algorithms including both types of features performed the best, although not significantly 

differently from comparable demographic/ behavioral only analysis.  

Discussion of Overall Findings 

This is the first study to employ ICA and examine functional network 

connectivity during moral processing in any population or to use machine learning based 

on neural activity during moral processing. Understanding the connectivity of neural 

processes during moral cognition may allow for a more sophisticated model of moral 

cognition in the brain. Additionally, understanding functional network connectivity 

related specifically to psychopathy may begin to explain discrepancies in findings in 

traditional GLM analyses of moral processing and psychopathy, since abnormalities may 

be more complex than simple deficiencies in particular neural regions.  
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Limitations of the Study 

 When using supervised learning to classify individuals as criminals or non-

criminal community members, there are several potential pitfalls. First, we cannot know 

whether these neural features reflect pre-existing brain characteristics that could predict 

future criminality or whether they are incidental to criminality. Longitudinal studies prior 

to adulthood would be a necessary next step to understand the directionality of these 

effects; use of the current findings in a legal setting would be premature. Additionally, 

since these results are specific to adults, we cannot generalize these findings to adolescent 

populations, where risk assessment would be the most potentially useful, but false 

labeling would be the most detrimental.  

 Another limitation is the discrepancy in sample sizes between the community and 

forensic samples. This imbalance may influence the power to detect differences, and may 

bias the results. However, we addressed this imbalance in the SVM by adjusting the cost 

specification while training the classifier to more greatly punish false positives.  

 There may also have been individual differences that were not controlled for or 

investigated in the analyses. For example, there may be differences in socioeconomic 

status and incarceration, in types of crimes committed, and in sentencing. Although we 

did include a substance use disorder variable in the analysis of the incarcerated 

population, we did not account for the severity of individual disorders, for sub-

dependence use, or for the unique mechanisms of different substances. Additionally, 

criminal and substance use histories in the community population were self-reported; this 

may potentially lead to a lower signal-to-noise ratio if individuals misrepresented those 

features.  
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 Another important consideration is that this study does not identify a specific 

relationship between atypical processing of moral stimuli and deficiencies in moral 

behavior or choices, much less identify a mechanism for intervention. Although it is 

presumed that criminals, and particularly psychopaths, commit moral violations, these 

individuals do not consistently perform worse on laboratory tasks of moral decision 

making (i.e., Aharoni et al., 2012). Therefore, it is not clear if the network engagement 

and connectivity differences reported here correspond to real-world moral decision 

making.  

Conclusions 

 This study is a first step in understanding network dynamics during moral 

processing, both in typically functioning adults and in individuals with criminal histories 

and psychopathic traits. We found support for a three process neurobiological account of 

moral processing (i.e., fronto-cognitive, limbic-emotive, and temporoparietal – social 

contextual). We provided the first evidence that incarcerated individuals differ from 

community members on functional network connectivity and dynamism, and that 

psychopathy may be related to abnormal limbic, temporal, and basal ganglia network 

engagement during moral processing. By building on this study through longitudinal 

research and replication, we may be able to use functional network connectivity during 

moral processing as a biomarker for risk of criminality and target interventions to the 

relevant circuits.  
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